Forgot password? New user? Sign up
Existing user? Log in
Which is bigger...
A=332222 \large A = \frac{33^2}{22^2}A=222332
OR
B=333223 \large B = \frac{33^{3}}{22^{3}}B=223333
Which of these options is the largest?
A=45B=25×25C=23×42×8 \begin{array}{l l l } A & = & 4^5 \\ B & = & 2^5 \times 2^5 \\ C & = & 2^3 \times 4^2 \times 8 \\ \end{array} ABC===4525×2523×42×8
A=3223 \large A = \frac{3^2}{2^3}A=2332
B=9446 \large B = \frac{9^{4}}{4^{6}}B=4694
Given:
A=330.1 \large A = 3^{30.1}A=330.1 B=915.1 \large B = 9^{15.1}B=915.1 C=2710.1 \large C = 27^{10.1}C=2710.1
Order A,BA, BA,B and CCC from largest to smallest.
Which is larger:
A=(51)3 or B=5(13)\large A = \left(5^1\right)^3 \quad \text{ or } \quad B = 5 ^{\left({1^3}\right)}A=(51)3 or B=5(13)
Problem Loading...
Note Loading...
Set Loading...