×
Back to all chapters

# Floor and Ceiling Functions

Floor functions map a real number x to the largest integer less than or equal to x. You can probably guess what the ceiling function does.

# Floor and Ceiling Functions: Level 4 Challenges

$\large \sum_{k=1}^{202} \left \lceil \sqrt k \ \right \rceil = \ ?$

Find the positive integer $$n$$, for which $\lfloor \log_2{1}\rfloor+\lfloor\log_2{2}\rfloor+\lfloor\log_2{3}\rfloor+\cdots+\lfloor\log_2{n}\rfloor=1994.$

What is the minimum integer value of $$x$$ that satisfies the equation

$\lfloor{\sqrt{x}}\rfloor - \lfloor{\sqrt{x+34}}\rfloor=0 ?$

This problem is posed by Siam H.

Details and assumptions

The function $$\lfloor x \rfloor: \mathbb{R} \rightarrow \mathbb{Z}$$ refers to the greatest integer smaller than or equal to $$x$$. For example $$\lfloor 2.3 \rfloor = 2$$ and $$\lfloor -5 \rfloor = -5$$.

$\left\lfloor x+0.19 \right\rfloor +\left\lfloor x+0.20 \right\rfloor +\left\lfloor x+0.21 \right\rfloor + \ldots + \left\lfloor x+0.91 \right\rfloor =542$

If $$x$$ satisfies the equation above, find the value of $$\left\lfloor 100x \right\rfloor$$.

Note that $$\left\lfloor X \right\rfloor$$ denote the floor function of $$X$$.

The number of real solutions of $$7\lfloor x\rfloor + 23\{x\}=191$$ is?

×