Sign up to access problem solutions.

Already have an account? Log in here.

Given 5 sticks of length 1, 3, 5, 9, and 10, how many distinct triangles can be formed? Learn the techniques and develop an intuition for working with geometric inequalities.

\[\sqrt{a^2+1}+\sqrt{b^2+16}+\sqrt{c^2+49} \]

For \(a,b,c \in \mathbb R \) such that \(a+b+c=5\), what is the minimum value of the expression below?

Sign up to access problem solutions.

Already have an account? Log in here.

Sign up to access problem solutions.

Already have an account? Log in here.

Sign up to access problem solutions.

Already have an account? Log in here.

Given constants \(\lambda ,\mu \in { \Re }^{ + }\), consider the set of points \(x, y \) such that \[ 2 \leq \left| x+y+\lambda \right| + \left| x-y+\mu \right| \leq 4.\]

What is the area of this region ?

Sign up to access problem solutions.

Already have an account? Log in here.

\[\large \sqrt{x^4-3x^2-6x+13} - \sqrt{x^4-x^2+1}\]

If the maximum value of the function above can be expressed as \(\sqrt{a}\) , find the value of \(a^2\).

Sign up to access problem solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...