Calculus
# Limits of Sequences and Series

$\sum_{n=1}^{\infty}3^n$

Does this geometric series converge to a finite number?

$\sum_{n=1}^{\infty}\left( \frac{1}{3} \right) ^n$

Does this geometric series converge to a finite number?

To what value does $\sum_{n=1}^{\infty} 5 \left( \frac{1}{5} \right) ^{n-1}$

converge?

Consider the series:

$\text{A. }\sum_{n=1}^{\infty} \frac{1}{n^2}$

$\text{B. }\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

$\sum_{n=1}^{\infty} (-1)^n$

Does this series converge?