\[\large \int_{-\frac \pi 2 }^{\frac \pi 2 } \bigg [ e^{ \sin(x)} \cos (x )\bigg ] \ dx = a - \frac 1 a, \ \ \ a > 0, \ \ \ \ \ a = \ ? \]
\[\large\int_{1}^{a}\dfrac{x-1}{x+\sqrt{x}}dx=4\]
Let \(a>1\) be a constant satisfying the equation above. What is the value of \(\large a^2+a+1\)?
Evaluate the following integral
\[\large\displaystyle \int \dfrac{\sin(x)}{\cos^3(x)} \, \Bbb{d}x \]
\[ \int_0^2 x \sqrt{1-(x-1)^2} \, dx = \, ? \]
Give your answer to 2 decimal places.
Evaluate the indefinite integral below.
\[\large \int \frac{dx}{1 + e^{-x}}\]
Problem Loading...
Note Loading...
Set Loading...