Calculus
# Integration Techniques

$\large\int_{1}^{a}\dfrac{x-1}{x+\sqrt{x}}dx=4$

Let $a>1$ be a constant satisfying the equation above. What is the value of $\large a^2+a+1$?

Evaluate the following integral

$\large\displaystyle \int \dfrac{\sin(x)}{\cos^3(x)} \, \Bbb{d}x$

$\int_0^2 x \sqrt{1-(x-1)^2} \, dx = \, ?$

Give your answer to 2 decimal places.

Evaluate the indefinite integral below.

$\large \int \frac{dx}{1 + e^{-x}}$