Calculus

L'Hôpital's Rule

L'Hopital's Rule - Convergence of Improper Integrals

         

What is the value of 1315log3xx6dx?\displaystyle{ \int_{\frac{1}{3}}^{\infty }\frac{1-5 \log 3x}{x^6} \mathrm{d} x}?

What is the value of 03xx(1+logx)dx?\displaystyle{ \int_{0}^{3 } x^x (1+ \log x) \mathrm{d} x}?

What is the value of 9(sin14x14xcos14x)dx?\displaystyle{ \int_{9}^{\infty }\left( \sin \frac{1}{4x}- \frac{1}{4x}\cos \frac{1}{4x} \right) \mathrm{d} x}?

What is the value of 0π2((π2x)sec2xtanx)dx?\displaystyle{ \int_{0}^{ \frac{\pi}{2} } \left( \left(\frac{\pi}{2} - x \right) \sec ^2 x -\tan x \right) \mathrm{d} x}?

What is the value of 03(x5(1+x)log(1+x)(1+x)x6)dx?\displaystyle{ \int_{0}^{3 } \left( \frac{x-5(1+x)\log (1+x)}{(1+x)x^6} \right) \mathrm{d} x}?

×

Problem Loading...

Note Loading...

Set Loading...