Forgot password? New user? Sign up
Existing user? Log in
Evaluate limx→51.\lim_{x\to 5} 1.x→5lim1.
True or False?
limx→01x=∞.\lim_{x\to 0} \frac{1}{x} = \infty.x→0limx1=∞.
Suppose f(x)f(x)f(x) is a function defined on the real numbers and limx→af(x)=L.\lim_{x\to a} f(x) = L.x→alimf(x)=L. Which of the following must be true?
Suppose limx→∞f(x)=∞ and limx→∞g(x)=∞,\lim_{x\to \infty} f(x) = \infty \text{ and } \lim_{x\to \infty} g(x) = \infty,x→∞limf(x)=∞ and x→∞limg(x)=∞,
and
L=limx→∞(f(x)−g(x)).L = \lim_{x\to \infty} (f(x) - g(x)).L=x→∞lim(f(x)−g(x)).
Is it possible that L=0L = 0L=0?
Is it possible that L=−∞L = -\inftyL=−∞?
Problem Loading...
Note Loading...
Set Loading...