Forgot password? New user? Sign up
Existing user? Log in
Find the value of
limx→−2x2+5x+6x+2. \lim_{x \to -2} \frac{x^2+ 5x+6}{x+2}. x→−2limx+2x2+5x+6.
Evaluate
limx→1x−1x+3−2. \lim_{x \to 1} \frac{x-1}{\sqrt{x+3} -2}. x→1limx+3−2x−1.
If limx→ax3−a3x2−a2=9,\displaystyle \lim_{x \to a} \frac{x^3-a^3}{x^2-a^2}=9,x→alimx2−a2x3−a3=9, what is the value of limx→ax3−ax2+a2x−a3x−a?\lim_{x \to a} \frac{x^3-ax^2+a^2x-a^3}{x-a}?x→alimx−ax3−ax2+a2x−a3?
If a aa and bbb satisfy
limx→0xx+a−b=6, \lim_{x \to 0} \frac{x}{\sqrt{x+a} - b} = 6, x→0limx+a−bx=6,
what is a+b a+b a+b?
limx→∞(x2+4x−1−x). \lim_{x \to \infty} \left( \sqrt{x^2 + 4x - 1} - x \right). x→∞lim(x2+4x−1−x).
Problem Loading...
Note Loading...
Set Loading...