Forgot password? New user? Sign up
Existing user? Log in
limx→∞sinxx= ? \lim_{x\to\infty} \dfrac{\sin x}x = \, ? x→∞limxsinx=?
Are you sure you want to view the solution?
limx→0∣2x−1∣−∣2x+1∣x= ?\Large \lim_{x\rightarrow 0} \frac{|2x-1|-|2x+1|}{x}= \ ?x→0limx∣2x−1∣−∣2x+1∣= ?
f(x)={(x2−4)/(x−2), if x<22, if x=2x3−3x2+2x+4, if x>2f(x) = \large{\begin{cases} (x^2 - 4)/(x-2), & \text{ if } x < 2 \\ 2, & \text{ if } x = 2 \\ x^3-3x^2 + 2x + 4 , & \text{ if } x > 2 \\ \end{cases} } f(x)=⎩⎪⎪⎨⎪⎪⎧(x2−4)/(x−2),2,x3−3x2+2x+4, if x<2 if x=2 if x>2
Compute limx→2f(x)\displaystyle \lim_{x \to 2} f(x)x→2limf(x).
Given that f(x)=1x−1f(x) = \dfrac1{x-1} f(x)=x−11 and g(x)=3x2−3x+2g(x) = \dfrac3{x^2-3x+2} g(x)=x2−3x+23, find limx→1f(x)g(x) \displaystyle \lim_{x\to1} \dfrac{f(x)}{g(x)} x→1limg(x)f(x).
limx→0 ⌊(sinx)(tanx)x2⌋= ? \large \lim_{x \to 0} \, \left \lfloor \dfrac{(\sin x) (\tan x)}{x^2} \right \rfloor = \ ? x→0lim⌊x2(sinx)(tanx)⌋= ?
Problem Loading...
Note Loading...
Set Loading...