Calculus
# Limits of Sequences and Series

Tetration is defined as

\[\Large {^{n}a} = \underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_{n \ a\text{'s}}.\]

Find the value of

\[\lim_{n\rightarrow\infty}{^{n}}\left(\sqrt {2}\right).\]

\[\lim_{n\to\infty}\frac{P_{n-1} P_{n+1}}{P_{n}^2} = \]

The sequence \(\{a_n\}\) follows the recursion \(a^2_{n+1}=2a_n+3\) with \(a_1=7.\)

Determine \(\displaystyle \lim_{n \to \infty} a_n\).

×

Problem Loading...

Note Loading...

Set Loading...