Calculus
# Limits of Functions

$\lim_{x \to \infty}x^2$

If the values of $x$ increase without bound, what do the values of $x^2$ approach?

$A = \lim_{x \to 3}x-9$

$B = \lim_{x \to 3}x^2-9$

$C = \lim_{x \to 3}x^3-9$

Which limit is equal to $0?$

$A = \lim_{x \to 0}\frac{1}{x}$

$B = \lim_{x \to 0}\frac{x}{x}$

$C = \lim_{x \to 0}\frac{x^2}{x}$

Which limit is equal to $0?$

$\lim_{x \to 0}\frac{x^3}{x^m} = 1$

What must be true of $m$?

$\lim_{x \to 5}\frac{x^2-10x+25}{\left(x-5\right)^2}$

If the value of $x$ approaches 5, what does the value of $\frac{x^2-10x+25}{\left(x-5\right)^2}$ approach?