Forgot password? New user? Sign up
Existing user? Log in
limx→∞x2\lim_{x \to \infty}x^2x→∞limx2
If the values of xxx increase without bound, what do the values of x2x^2x2 approach?
A=limx→3x−9A = \lim_{x \to 3}x-9A=x→3limx−9
B=limx→3x2−9B = \lim_{x \to 3}x^2-9B=x→3limx2−9
C=limx→3x3−9C = \lim_{x \to 3}x^3-9C=x→3limx3−9
Which limit is equal to 0?0?0?
A=limx→01xA = \lim_{x \to 0}\frac{1}{x}A=x→0limx1
B=limx→0xxB = \lim_{x \to 0}\frac{x}{x}B=x→0limxx
C=limx→0x2xC = \lim_{x \to 0}\frac{x^2}{x}C=x→0limxx2
limx→0x3xm=1\lim_{x \to 0}\frac{x^3}{x^m} = 1x→0limxmx3=1
What must be true of mmm?
limx→5x2−10x+25(x−5)2\lim_{x \to 5}\frac{x^2-10x+25}{\left(x-5\right)^2}x→5lim(x−5)2x2−10x+25
If the value of xxx approaches 5, what does the value of x2−10x+25(x−5)2\frac{x^2-10x+25}{\left(x-5\right)^2}(x−5)2x2−10x+25 approach?
Problem Loading...
Note Loading...
Set Loading...