Waste less time on Facebook — follow Brilliant.
Back to all chapters

Logarithmic Functions

Logarithmic scales are used when the range of possible values is very wide, such as the intensity of an earthquake or the acidity of a liquid, in order to avoid the use of large numbers.

Logarithmic Functions: Level 1 Challenges


\[ \large \log_7 35 + \log_7 35 - \log_7 25 = \ ? \]

\[\large\log_{\color{green}{y}}{\color{blue}{x}}+\log_{\color{blue}{x}}{\color{green}{y}}=-2\] Find the value of \(\color{blue}{x}\color{green}{y}.\)

If \( 4 \log_{12} \left(x^9\right) + \log_{12} \left(x^6\right) = 126\), find \(x.\)

\[\frac{1}{\log_{2}{100!}}+\frac{1}{\log_{3}{100!}}+\frac{1}{\log_{4}{100!}}+\ldots+\frac{1}{\log_{100}{100!}}= \ ? \]

Find the smallest number among the following numbers:

(A) \(\log_{2015}2016\)

(B) \(\log_{2016}2017\)

(C) \(\log_{2017}2018\)

(D) \(\log_{2018}2019\)

(E) \(\log_{2019}2020\)


Problem Loading...

Note Loading...

Set Loading...