Algebra
# Logarithmic Inequalities

Given $\log 2=0.3010$ and $\log 3=0.4771,$ solve the inequality $\log_9(x+7)>\log_8(x+7).$

Solve the inequality $\log_{5}\left( \log_{4}x\right) <3 .$

Solve the inequality $\left( \log_{5}4+\log_{7}x\cdot \log_{5}7\right)\log_{4}5\le 11.$

Solve the inequality $\frac{\log_2 3 \cdot \log_3 32 \cdot \log_5 2^x}{\log_5 4+\log_5 8}> 15.$

Solve the inequality $\log_{14} \frac{1}{x} > \log_{15} \frac{1}{x}.$