Forgot password? New user? Sign up
Existing user? Log in
Solve the logarithmic inequality log3(x−9)+log3(x−7)<1.\log_3(x-9)+\log_3(x-7)<1.log3(x−9)+log3(x−7)<1.
How many integer solutions does the following inequality have: log3x9+(log3x)2≤10?\log_{3}x^{9}+\left( \log_{3}x \right)^2 \le 10?log3x9+(log3x)2≤10?
If the solution to the inequality (log5x)2<5−log5x4 (\log_{5} x)^2 < 5 - \log_{5} x^{4} (log5x)2<5−log5x4 is a<x<b a < x < b a<x<b, what is the value of 1ab \frac{1}{ab} ab1?
Solve the logarithmic inequality log2(15x−17)≥log2(x+16).\log_2 (15x-17) \ge \log_2 (x+16).log2(15x−17)≥log2(x+16).
How many positive integers xxx satisfy the inequality log0.1(x−15)−log0.1(301−x)>0 \log_{0.1} (x-15) - \log_{0.1} (301-x) > 0 log0.1(x−15)−log0.1(301−x)>0?
Problem Loading...
Note Loading...
Set Loading...