Forgot password? New user? Sign up
Existing user? Log in
Solve the logarithmic inequality log25(3x2+4x+1)≤log5(x+1)+1.\log_{25}\left(3 x^2+4x+1\right)\le \log_{5}(x+1)+1.log25(3x2+4x+1)≤log5(x+1)+1.
Solve log2(x−13)<log4(x−10)+1.\log_2(x-13)<\log_4(x-10)+1.log2(x−13)<log4(x−10)+1.
How many integers xxx satisfy the logarithmic inequality log2(x−1)≥log8(2x3−13x2+20x−9)?\log_{2}(x-1)\ge \log_{8}(2x^3-13x^2+20x-9)?log2(x−1)≥log8(2x3−13x2+20x−9)?
How many integer solutions does the following inequality have: log3(x−1)≤log9(313−x2)?\log_{3}(x-1)\le \log_{9}(313-x^2)?log3(x−1)≤log9(313−x2)?
What is the minimum integer xxx that satisfies the inequality log2(x−4)>log4(x−2)?\log_{2}(x-4)>\log_{4}(x-2)?log2(x−4)>log4(x−2)?
Problem Loading...
Note Loading...
Set Loading...