Forgot password? New user? Sign up
Existing user? Log in
True or false: ln(10)>2\ln(10) > 2ln(10)>2
log2(x−2)+log2(x−3)<1\log_{2}(x-2) + \log_{2}(x-3) < 1log2(x−2)+log2(x−3)<1
What values of xxx satisfy the above statement?
How many integer values of xxx satisfy this inequality?
ln(2x)>ln(x2−3)\ln(2x) > \ln(x^2-3)ln(2x)>ln(x2−3)
What values of xxx satisfy the relationship
log6(x−3)<log7(x−3)\log_{6}(x-3) < \log_{7}(x-3)log6(x−3)<log7(x−3)
log5(x−5)<2\log_{5}(x-5) < 2log5(x−5)<2
Solve for x.
Problem Loading...
Note Loading...
Set Loading...