Algebra
# Logarithmic Inequalities

True or false: $\ln(10) > 2$

$\log_{2}(x-2) + \log_{2}(x-3) < 1$

What values of $x$ satisfy the above statement?

How many integer values of $x$ satisfy this inequality?

$\ln(2x) > \ln(x^2-3)$

What values of $x$ satisfy the relationship

$\log_{6}(x-3) < \log_{7}(x-3)$

$\log_{5}(x-5) < 2$

Solve for x.