Waste less time on Facebook — follow Brilliant.
Back to all chapters

Logarithmic Functions

Logarithmic scales are used when the range of possible values is very wide, such as the intensity of an earthquake or the acidity of a liquid, in order to avoid the use of large numbers.

Logarithm Problems


\(f(x) = \log_{60}(x^2)\)

What is the value of \(f(3)+f(4)+f(5)\) ?

\[\log_2(\sqrt{x}) + \log_4(x-3) = \log_{16}(9x^2)\]

What value(s) of x satisfy this equation?

\[2(\log_x(3)) + \log_3(x) = 3\]

What is the sum of all real values of \(x\) that satisfy the above equation?

\(f(x) = \log_{2}(x) - \log_{2^2}(x)\) \(+ \log_{2^3}(x) - \log_{2^4}(x) \dots\) \(+ \log_{2^{99}}(x) - \log_{2^{100}}(x)\)

What is the value of \(f(2^{(2^{100})}) - (2)f(2^{(2^{99})})\) \(+ (2^2)f(2^{(2^{98})}) - (2^3)f(2^{(2^{97})}) \dots\) \(+ (2^{98})f(2^{(2^{2})}) - (2^{99})f(2^{(2^{1})})\) ?

Let \(f(x) = \log_{10}(\log_{10}(\log_{10}(x)))\)

The domain of \(f\) is \((k,\infty)\)

What is the value of \(k\)?


Problem Loading...

Note Loading...

Set Loading...