Forgot password? New user? Sign up
Existing user? Log in
f(x)=log60(x2)f(x) = \log_{60}(x^2)f(x)=log60(x2)
What is the value of f(3)+f(4)+f(5)f(3)+f(4)+f(5)f(3)+f(4)+f(5) ?
log2(x)+log4(x−3)=log16(9x2)\log_2(\sqrt{x}) + \log_4(x-3) = \log_{16}(9x^2)log2(x)+log4(x−3)=log16(9x2)
What value(s) of x satisfy this equation?
2(logx(3))+log3(x)=32(\log_x(3)) + \log_3(x) = 32(logx(3))+log3(x)=3
What is the sum of all real values of xxx that satisfy the above equation?
f(x)=log2(x)−log22(x)f(x) = \log_{2}(x) - \log_{2^2}(x)f(x)=log2(x)−log22(x) +log23(x)−log24(x)…+ \log_{2^3}(x) - \log_{2^4}(x) \dots+log23(x)−log24(x)… +log299(x)−log2100(x)+ \log_{2^{99}}(x) - \log_{2^{100}}(x)+log299(x)−log2100(x)
What is the value of f(2(2100))−(2)f(2(299))f(2^{(2^{100})}) - (2)f(2^{(2^{99})})f(2(2100))−(2)f(2(299)) +(22)f(2(298))−(23)f(2(297))…+ (2^2)f(2^{(2^{98})}) - (2^3)f(2^{(2^{97})}) \dots+(22)f(2(298))−(23)f(2(297))… +(298)f(2(22))−(299)f(2(21))+ (2^{98})f(2^{(2^{2})}) - (2^{99})f(2^{(2^{1})})+(298)f(2(22))−(299)f(2(21)) ?
Let f(x)=log10(log10(log10(x)))f(x) = \log_{10}(\log_{10}(\log_{10}(x)))f(x)=log10(log10(log10(x)))
The domain of fff is (k,∞)(k,\infty)(k,∞)
What is the value of kkk?
Problem Loading...
Note Loading...
Set Loading...