Quantitative Finance
# Matrices

What is \(\exp(A)\) if \(\displaystyle A=\begin{pmatrix} 8 & 1 \\ 1 & 8 \end{pmatrix} ?\)

\[\begin{matrix} \text{(A)} \quad { \frac{1}{2}\begin{pmatrix}e^{9}+e^{7} & e^{9}-e^{7} \\ e^{9}-e^{7} & e^{9}+e^{7} \end{pmatrix} } & \text{(B)} \quad { \frac{1}{2}\begin{pmatrix}e^{9}-e^{7} & e^{9}+e^{7} \\ e^{9}+e^{7} & e^{9}-e^{7} \end{pmatrix} } \\ \\ \text{(C)} \quad { \frac{1}{4}\begin{pmatrix}e^{9}+e^{7} & e^{9}-e^{7} \\ e^{9}-e^{7} & e^{9}+e^{7} \end{pmatrix} } & \text{(D)} \quad { \frac{1}{4}\begin{pmatrix}e^{9}-e^{7} & e^{9}+e^{7} \\ e^{9}+e^{7} & e^{9}-e^{7} \end{pmatrix} } \end{matrix}\]

What is \(\exp(A)\) if \(\displaystyle A=\begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix} ?\)

What is \(\exp(A)\) if \(\displaystyle A=\begin{pmatrix} 4 & 0 \\ 0 & 7 \end{pmatrix} ?\)

What is \(\exp(A)\) if \(\displaystyle A=\begin{pmatrix} 0 & -8 \\ 0 & 8 \end{pmatrix} ?\)

×

Problem Loading...

Note Loading...

Set Loading...