Forgot password? New user? Sign up
Existing user? Log in
Which of the following is correct?
A. 2−1≡3(mod7)\ 2^{-1} \equiv 3 \pmod{7} 2−1≡3(mod7) B. 3−1≡4(mod7)\ 3^{-1} \equiv 4 \pmod{7} 3−1≡4(mod7) C. 5−1≡2(mod7)\ 5^{-1} \equiv 2 \pmod{7} 5−1≡2(mod7) D. 6−1≡6(mod7)\ 6^{-1} \equiv 6 \pmod{7} 6−1≡6(mod7)
What is 5−1(mod17)? 5 ^ {-1} \pmod{17} ?5−1(mod17)?
Hint: Remember that inverses multiply to 1.
What is
14−1(mod17)? \large 14^{-1} \pmod{17} ? 14−1(mod17)?
What is 10!(mod11)? \large 10! \pmod{11}? 10!(mod11)?
What is 2−1(mod39)? 2 ^ {-1} \pmod{39} ?2−1(mod39)?
Note: 2−1(mod39)2^{-1} \pmod{39}2−1(mod39) is the integer kkk such that 2×k≡1(mod39).2 \times k \equiv 1 \pmod{39}.2×k≡1(mod39).
Problem Loading...
Note Loading...
Set Loading...