Waste less time on Facebook — follow Brilliant.
×

Number Bases

How would math be different if humans only had 6 fingers and 8 toes? How does a computer do math if it has no fingers to count on?

Level 3

There is a number \(a\), which can be written as \(\overline{xyz}\) in base 9 and \(\overline{zyx}\) in base 6, for some positive integer \(x,y,z\). Find \(x+y+z\).

Details and Assumption

\( \overline{xyz} \) represents a 3-digit integer such that it is equal to \(100x+10y+z\) for \(x,y,z\) are non-negative integers and \( 0 \le x,y,z \le 9\).

Find the smallest natural number greater than 3 which has the unit digit of 3 when expressed in base-4, base-5, base-6, base-7, and base-8.

Express your answer in base 10.

\(N\) is an integer whose representation in base \(b\) is 777. Find the smallest positive integer \(b\) for which \(N\) is the fourth power of an integer.

\[(2^3)! = 40320_{10} = 1001\:1101\:1000\:0000_2.\]

The factorial shown above has seven trailing zeros.

How many trailing zeroes does the number \((2^{16})!\) have in binary notation?

\[1,3,4,9,10,12,13,\ldots\]

The above sequence consists of the powers of \(3\) or the sum of distinct powers of \(3\), arranged in increasing order.

Find the \(100^\text{th}\) term of the sequence.

×

Problem Loading...

Note Loading...

Set Loading...