Algebra

Partial Fractions

Partial Fractions: Level 3 Challenges

         

12!+23!+34!+45!+= ?\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \frac{4}{5!} + \cdots = \ ?

1+12+16+112+120+= ?1 + \frac {1}{\color{#3D99F6}2} + \frac {1}{\color{#3D99F6}6} + \frac {1}{\color{#3D99F6}{12}} + \frac {1}{\color{#3D99F6}{20}} + \ldots = \ \color{teal}?

n=11n2+3n+2= ?\large \displaystyle \sum_{n = 1}^{\infty} \dfrac {1}{n^2 + 3n + 2} = \ ?

1(x1)(x2)+1(x2)(x3)+1(x3)(x4)=16 \frac{1}{(x-1)(x-2)} + \frac{1}{(x-2)(x-3)} + \frac{1}{(x-3)(x-4)} = \frac{1}{6}

What is the sum of all real values of xx that satisfy the above equation?

3233234324532910= ? \LARGE \sqrt[3]{ \sqrt{32}} \sqrt[4]{ \sqrt[3]{32}} \sqrt[5]{ \sqrt[4]{32}} \cdots \sqrt[10]{ \sqrt[9]{32}} = \ ?

×

Problem Loading...

Note Loading...

Set Loading...