Express rational functions as a sum of fractions with simpler denominators. You can apply this to telescoping series to mass cancel terms in a seemingly complicated sum.

\[\large \displaystyle \sum_{n = 1}^{\infty} \dfrac {1}{n^2 + 3n + 2} = \ ? \]

\[\begin{align} \frac{1}{1\times 2} & = \frac{1}{1} - \frac{1}{2} \\ & \\ \frac{1}{2\times 3} & = \frac{1}{2} - \frac{1}{3} \\ & \\ \frac{1}{3\times 4} & = \frac{1}{3} - \frac{1}{4} \\ \vdots & \end{align} \]

Following the pattern above, if \( \displaystyle \frac{1}{11\times 12} = \frac{1}{a} - \frac{1}{b}, \) what are the values of \( a \) and \( b\)?

×

Problem Loading...

Note Loading...

Set Loading...