Back to all chapters
# Polar Coordinates

Polar coordinates are a way to describe where a point is on a plane. Instead of using x and y, you use the angle theta and radius r, to describe the angle and distance of the point from the origin.

How many complex numbers \(a + bi\) are there where \(a\) and \(b\) are integers and

\[ |a + bi| \leq 5 ? \]

**Details and assumptions:**

\( |a+bi|\) denotes the modulus or absolute value.

\[\large\begin{cases} {56x +33y = -\frac y{x^2+y^2} } \\ {33x -56y = \frac x{x^2+y^2} } \end{cases} \]

Given that \(x,y\) are complex numbers that satisfy the system of equations above and that \( |x| + |y| \) equals \(\frac pq\) for coprime positive integers \(p,q\), evaluate \(6p-q\).

Let \(z_1 = 6+i\) and \(z_2 = 4-3i\).

Let \(z\) be a complex number such that \(\text{arg}\left(\dfrac{z-z_1}{z_2-z}\right)=\dfrac{\pi}{2}\), and \(|z-(5-i)|\)=\(\sqrt{m}\).

Find \(m.\)

\(\)

**Details and Assumptions**:

- \( \text{arg}(x)\) is the argument of \(x\).
- \(z_1,z_2,\) and \(z\) are complex numbers.

Let \(x\) be a solution to the equation \(x^2+x+2014=0\).

Find the value of \[\lim\limits_{n\to \infty} \sqrt[\Large n]{\prod_{i=1}^{2n}\left|\dfrac{x^i}{2014^{\frac{i-1}{2}}}+1\right|}.\]

×

Problem Loading...

Note Loading...

Set Loading...