You must be logged in to see worked solutions.

Already have an account? Log in here.

Polar coordinates are a way to describe where a point is on a plane. Instead of using x and y, you use the angle theta and radius r, to describe the angle and distance of the point from the origin.

You must be logged in to see worked solutions.

Already have an account? Log in here.

Let \(z_1\) and \(z_2\) be complex numbers such that \[z_1 = 15 \left( \cos \frac{5}{12}\pi + i \sin \frac{5}{12}\pi \right),\] \[z_2 = 2 \left( \cos \frac{1}{12}\pi + i \sin \frac{1}{12}\pi \right). \] The product \(z_1 z_2\) can be expressed as \( a + bi, \) where \(a\) and \(b\) are real numbers. What is the value of \(a+b?\)

**Details and assumptions**

\(i\) is the imaginary number satisfying \(i^2 = -1\).

You must be logged in to see worked solutions.

Already have an account? Log in here.

You must be logged in to see worked solutions.

Already have an account? Log in here.

You must be logged in to see worked solutions.

Already have an account? Log in here.

Let \(z_1\) and \(z_2\) be complex numbers such that \[z_1 = 10 \left( \cos \frac{1}{24}\pi + i \sin \frac{1}{24}\pi \right),\] \[z_2 = 5 \sqrt{2} \left( \cos \frac{5}{24}\pi + i \sin \frac{5}{24}\pi \right). \] The product \(z_1 z_2\) can be expressed as \( a + bi, \) where \(a\) and \(b\) are real numbers. What is the value of \( a+b \)?

**Details and assumptions**

\(i\) is the imaginary number that satisfies \(i^2 = -1\).

You must be logged in to see worked solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...