Forgot password? New user? Sign up
Existing user? Log in
a+b=7b+a=11 \large \sqrt a + b = 7 \\ \large \sqrt b + a = 11 a+b=7b+a=11
If aaa and bbb are real numbers that satisfy the equation above, what is the value of aaa and bbb respectively?
Are you sure you want to view the solution?
Given that 6y2=20146y^2=20146y2=2014, find the value of
9(y4+6y3+9y2)y2+6y+9.\frac{9\big(y^4+6y^3+9y^2\big)}{y^2+6y+9}. y2+6y+99(y4+6y3+9y2).
a3+b3=2593080, a+b=210, ab= ?\large a^3 + b^3 = 2593080, \ \ a + b = 210, \ \ \ \ \ ab = \ ? a3+b3=2593080, a+b=210, ab= ?
Given that a+b=1a+b=1a+b=1 and a2+b2=2a^2+b^2=2a2+b2=2, what is the value of a7+b7a^7+b^7a7+b7?
If x2−5x−1=0 x^2 - 5x - 1 = 0 x2−5x−1=0, then find the value of x2+1x2. x^2 + \frac{1}{x^2}.x2+x21.
Problem Loading...
Note Loading...
Set Loading...