Algebra
# Power Mean Inequalities

\[\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{d} + \dfrac{d}{a} \]

If \( a, b, c \) and \( d \) are any four positive real numbers, then find the minimum value of the expression above.

For \(a,b,c>0\) and \(a+b+c=6\). Find the minimum value of

\[ \large \left (a+\frac{1}{b} \right )^{2}+ \left (b+\frac{1}{c} \right )^{2}+\left (c+\frac{1}{a} \right )^{2} \]

×

Problem Loading...

Note Loading...

Set Loading...