Waste less time on Facebook — follow Brilliant.
×
Back to all chapters

Prime Numbers

2, 3, 5, 7, ... The set of prime numbers is the alphabet of mathematics that allows us to communicate across the universe.

Prime Numbers: Level 4 Challenges

         

A common flawed presentation of Euclid's proof of the infinitude of primes is as follows:

Assume there are only a finite number of primes \(p_1,p_2,\ldots,p_n\). Let \(N\) be the product of all of those primes, add to it \(1\) and you get a new prime number since it isn't divisible by any of the primes we listed at first. Contradiction! \(\Rightarrow\Leftarrow\) Therefore, there is an infinite number of primes.

Let \( q_1, q_2, q_3, \ldots \) be the list of all primes (in ascending order). Your mission is to find the smallest value of \( q_1 q_2 q_3 \ldots q_n + 1 \) that is not a prime.

Let \(A={102^1, 102^2, 102^3, \cdots}\). How many primes \(p\) are there such that \(A\) has at least one element \(a\) such that \(a \equiv -1 \text{ (mod p)}\)?

For example, one such prime is \(103\), because \(102^1 \equiv -1 \text{ (mod 103)}\).

\[\Large \frac{d}{dx} n \neq 0?\]

In calculus, when you take the derivative of a constant you get zero as an answer. In number theory, there is something called the arithmetic derivative which allows you to differentiate a number and get a nonzero answer. The arithmetic derivative works as follows.

Where \(n'\) denotes the arithmetic derivative of \(n\):

\(p' = 1\) for all primes \(p\)

\((ab)'=a'b+ab'\)

\(0'=1'=0\)

For example, \(6'=(2\times3)'=(2')(3)+(2)(3')=(1)(3)+(2)(1)=5\)

The double arithmetic derivative, denoted by \(n''\), is simply defined by \(n''=(n')'\).

Find the sum of all positive integers \(n<100\) such that \(n''=1\)

\[ \Huge { \sum_{m=1}^{2^{820}} } \large \left \lfloor \left \lfloor \frac{820}{1 + \displaystyle \sum_{j=2}^m \left \lfloor\frac{(j-1)!+1}{j} -\left \lfloor\frac{(j-1)!}{j}\right \rfloor \right \rfloor }\right \rfloor ^{1/820} \right \rfloor = \ ? \]

You may use this List of Primes as a reference.

Note: By definition, \( \displaystyle \sum_{a=b+1}^b 1 = 0 \).

This summation is rather infamous.

What is the smallest prime number that cannot be written in the form \(\dfrac{pq + 1}{p + q}\), where \(p\) and \(q\) are prime numbers?

For example, \(2\) can be written as \(\dfrac{3*5 + 1}{3 + 5}\).

×

Problem Loading...

Note Loading...

Set Loading...