Forgot password? New user? Sign up
Existing user? Log in
If sequence {an}\{a_n\}{an} satisfies limn→∞(2n−1)an=16,\displaystyle \lim_{n \to \infty}(2n-1)a_n=16,n→∞lim(2n−1)an=16, what is the value of limn→∞nan\displaystyle \lim_{n \to \infty}n a_nn→∞limnan?
What is the value of limx→05x(1x+1−15x+1)?\lim_{x \to 0} \frac{5}{x}\left(\frac{1}{x+1}-\frac{1}{5x+1}\right)?x→0limx5(x+11−5x+11)?
Given that limn→∞{an}=10 \displaystyle \lim_{n \to \infty} \left\{ a_n \right\} = 10 n→∞lim{an}=10 , and limn→∞{bn}=11 \displaystyle \lim_{n \to \infty} \left\{ b_n \right\} = 11 n→∞lim{bn}=11, and {cn}={an+bn} \left\{ c_n \right\} = \left\{ a_n + b_n \right\} {cn}={an+bn}, evaluate: limn→∞{cn}. \displaystyle \lim_{n \to \infty} \left\{ c_n \right\}. n→∞lim{cn}.
Below is the graph of y=f(x),y=f(x),y=f(x), with a=5a=5a=5, b=2b=2b=2 and c=9c=9c=9. What is the value of limx→a+f(x)+limx→a−f(x)?\lim_{x \to a^+} f(x)+\lim_{x \to a^-} f(x)?x→a+limf(x)+x→a−limf(x)?
Below is the graph of function f(x).f(x).f(x). If a=10,b=20,f(a)=c=10,a=10, b=20, f(a)=c=10,a=10,b=20,f(a)=c=10, what is the value of limx→af(x)?\displaystyle \lim_{x \to a} f(x)?x→alimf(x)?
Problem Loading...
Note Loading...
Set Loading...