Forgot password? New user? Sign up
Existing user? Log in
tan2θtan2θ+1= ?\large \dfrac { { \tan }^{ 2 }\theta }{ { \tan }^{ 2 }\theta+ 1 }= \, ? tan2θ+1tan2θ=?
Check out the set: 2016 Problems
Are you sure you want to view the solution?
True or False:
(cosx−sinx)(cosx+sinx)=cos4x−sin4x\large (\cos x - \sin x)(\cos x +\sin x) = \cos^4 x - \sin^4 x(cosx−sinx)(cosx+sinx)=cos4x−sin4x
sinθ+sin2θ=1 {\sin}\theta+{\sin}^2\theta= 1sinθ+sin2θ=1
If the above equation is true, find the value of the expression below
cos2θ+cos4θ. {\cos}^2\theta+{\cos}^4\theta. cos2θ+cos4θ.
Evaluate (12sin24∘)sin24∘×(12sin66∘)sin66∘×(12cos36∘)cos36∘×(12cos54∘)cos54∘.\large { \begin{aligned} & \left(12 ^{\sin 24 ^\circ}\right)^{\sin 24 ^\circ} \times \left(12 ^{\sin 66 ^\circ}\right)^{\sin 66 ^\circ} \\ & \times \left(12 ^{\cos 36 ^\circ}\right)^{\cos 36 ^\circ} \times \left(12 ^{\cos 54 ^\circ}\right)^{\cos 54 ^\circ}. \end{aligned}}(12sin24∘)sin24∘×(12sin66∘)sin66∘×(12cos36∘)cos36∘×(12cos54∘)cos54∘.
Find the value of
cos245∘+sin245∘.\cos^2 45^{\circ} +\sin^2 45^{\circ}.cos245∘+sin245∘.
Problem Loading...
Note Loading...
Set Loading...