Forgot password? New user? Sign up
Existing user? Log in
Given sin2(θ)+cos2(θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 sin2(θ)+cos2(θ)=1, which of the following is true?
True or False: sin2(θ)−cos2(θ)+1=2sin2(θ) \sin^2(\theta) - \cos^2(\theta) + 1 = 2\sin^2(\theta) sin2(θ)−cos2(θ)+1=2sin2(θ).
(Hint: Use the identity sin2(θ)+cos2(θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 sin2(θ)+cos2(θ)=1.)
Which is these is equivalent to cos2(θ)sec2(θ)−cos2(θ), \cos^2(\theta)\sec^2(\theta) - \cos^2(\theta),cos2(θ)sec2(θ)−cos2(θ), over values of θ\thetaθ for which the given expression is defined?
Which of these is equivalent to x x x?
If sin2(θ)=925 \sin^2(\theta) = \frac{9}{25} sin2(θ)=259, what is cos2(θ)? \cos^2(\theta) ?cos2(θ)?
Problem Loading...
Note Loading...
Set Loading...