Sign up to access problem solutions.

Already have an account? Log in here.

This one number can tell you whether the solutions to a quadratic equation are real or non-real, and whether they are distinct or repeated.

What is the sum of all the integers \(a\) such that the following equation has no real roots:

\[\frac{x^2+x+a-5}{x-1}=a?\]

Sign up to access problem solutions.

Already have an account? Log in here.

\(k\) is uniformly chosen from the interval \([ -5, 5] \). Let \(p\) be the probability that the quadratic \( f(x) = x^2 + kx + 1 \) has *both* roots between -2 and 4. What is the value of \( \lfloor 1000 p \rfloor \)?

**Details and assumptions**

**Greatest Integer Function:** \(\lfloor x \rfloor: \mathbb{R} \rightarrow \mathbb{Z}\) refers to the greatest integer less than or equal to \(x\). For example \(\lfloor 2.3 \rfloor = 2\) and \(\lfloor -3.4 \rfloor = -4\).

Sign up to access problem solutions.

Already have an account? Log in here.

Sign up to access problem solutions.

Already have an account? Log in here.

If \(\alpha\) is one of the non-real seventh roots of unity, then find the discriminant of the monic quadratic equation with the roots \(\alpha+\alpha^2+\alpha^4\) and \(\alpha^3+\alpha^5+\alpha^6\).

\[\]
**Details and assumptions**

The discriminant of a quadratic equation \(ax^2+bx+c=0\) is \(b^2-4ac.\)

Sign up to access problem solutions.

Already have an account? Log in here.

Sign up to access problem solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...