Sign up to access problem solutions.

Already have an account? Log in here.

A rational function can have a variable like "x" in the numerator AND the denominator. When this happens, there are some special rules and properties to consider.

**True or false**:

All rational functions have some form of asymptote, whether it's slant, vertical, or horizontal.

Sign up to access problem solutions.

Already have an account? Log in here.

How many vertical asymptotes are there on the following rational function?

\[f(x) = \frac{x^{356} - 123x^{22} - 43x^{2}+10123}{x}\]

Sign up to access problem solutions.

Already have an account? Log in here.

\[ f(x) = \dfrac{(x-1)(x-2)(x-3)(x-4)(x-3)(x-2)(x-1)}{(x-2)(x-4)(x-2)}\]

How many values of \( x \) satisfy the equation \( f(x) = 1 \) ?

Sign up to access problem solutions.

Already have an account? Log in here.

\[f(x)=\dfrac{x^2-6x+6}{2x-4}\] \[g(x)=\dfrac{ax^2+bx+c}{x-d}\]

You are given two functions \(f\) and \(g\) above, where \(a, b, c,\) and \(d\) are unknown constants. Also, you are given the following information about the function \(g\):

It has the same vertical asymptote as \(f\).

Its diagonal asymptote is perpendicular to that of \(f\), and these two asymptotes intersect each other on the \(y\)-axis.

The graphs of \(f\) and \(g\) have two intersection points. One of them is at \(x = -2\). (In other words, \(f(-2) = g(-2)\).)

What is the value of the other \(x\)-coordinate where \(f\) and \(g\) intersect?

Sign up to access problem solutions.

Already have an account? Log in here.

Let \(x\) be a real number. Consider the function

\[ f(x) = \frac{x^3 - 1}{x^2 + x - 2} \]

How many real zeroes does it have?

Sign up to access problem solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...