Number Theory
# Rational Numbers

What is \(0.1212 \ldots\) in fractional form?

\[ \frac{n}{ 810} = 0.\overline{d25} = 0.d25d25d25d25\ldots \]

For which positive integer \(n\), will \(d\) be a digit?

\[\large \displaystyle {0. \overline{42}-0.\overline{35}= \, ?}\]

\(\)

**Note:** \(0.\overline{ab}=0.abababab \ldots \)

Is \(0.285714285714\overline {285714}\) rational?

\(\)

**Note:** The notation \(“\, \overline{285714}" \) indicates that these digits in the decimal are being repeated. For example, \( 0.1\overline{2} = 0.12222 \ldots. \)

×

Problem Loading...

Note Loading...

Set Loading...