Waste less time on Facebook — follow Brilliant.
×

Roots of Unity

A root of unity is a complex number that, when raised to a positive integer power, results in 1. Roots of unity have applications to the geometry of regular polygons, group theory, and number theory.

Level 3

         

\[\huge x^{1729}+x^{-1729}\]

Find the value of the above expression if \(x + \frac 1 x = 1 \)

If for \(z \in \mathbb{C} \space ,\) \(z+\dfrac{1}{z}=2 \cos 6°.\) Then find the value of \[\left( z^{1000}+\frac{1}{z^{1000}} \right).\]

If \(w \not= 1\) is an \(n\)-th root of unity, then find the value of

\[ 1+w+w^2+w^3+\cdots +w^{n-1}\]

The point \(\left(4+7\sqrt{3}\ ,\ 7-4\sqrt{3}\right)\) is rotated \(\dfrac{\pi}{3}\) radians counterclockwise about the origin. If the resulting image is \((a,b)\), then what is \(a+b\)?

Evaluate

\[ \cos \frac{ \pi}{7} - \cos \frac{ 2\pi }{7} + \cos \frac{ 3 \pi}{7} . \]

×

Problem Loading...

Note Loading...

Set Loading...