Forgot password? New user? Sign up
Existing user? Log in
If w≠1w \not= 1w=1 is an nnn-th root of unity, then find the value of
1+w+w2+w3+⋯+wn−1 1+w+w^2+w^3+\cdots +w^{n-1}1+w+w2+w3+⋯+wn−1
Are you sure you want to view the solution?
Evaluate
cosπ7−cos2π7+cos3π7. \cos \frac{ \pi}{7} - \cos \frac{ 2\pi }{7} + \cos \frac{ 3 \pi}{7} . cos7π−cos72π+cos73π.
x1729+x−1729\huge x^{1729}+x^{-1729}x1729+x−1729
Find the value of the above expression if x+1x=1x + \frac 1 x = 1 x+x1=1
If for z∈C ,z \in \mathbb{C} \space ,z∈C , z+1z=2cos6°.z+\dfrac{1}{z}=2 \cos 6°.z+z1=2cos6°. Then find the value of (z1000+1z1000).\left( z^{1000}+\frac{1}{z^{1000}} \right).(z1000+z10001).
Given z2+z+1=0,z^2+z+1=0,z2+z+1=0, find the value of
(z+1z)2+(z2+1z2)2+(z3+1z3)2+⋯+(z21+1z21)2.\left(z+\dfrac{1}{z} \right)^2+\left(z^2+\dfrac{1}{z^2}\right)^2+\left(z^3+\dfrac{1}{z^3} \right)^2+\cdots+\left(z^{21}+\dfrac{1}{z^{21}}\right)^2.(z+z1)2+(z2+z21)2+(z3+z31)2+⋯+(z21+z211)2.
Problem Loading...
Note Loading...
Set Loading...