Classical Mechanics
# Rotational Kinetic Energy

As shown in the figure below, the rotational inertia of a thin rod that rotates about axis through its center perpendicular to length is \(\displaystyle I=\frac{1}{12}ML^2,\) where \(M\) and \(L\) are the mass and length of the thin rod, respectively.

As shown in the figure below, the rotational inertia of a thin rod that rotates about the axis through its center perpendicular to length is \(\displaystyle I=\frac{1}{12}ML^2,\) where \(M\) and \(L\) are the mass and length of the thin rod, respectively.

×

Problem Loading...

Note Loading...

Set Loading...