×
Back to all chapters

# SAT Composite Figures



If $$m=14$$ and $$\overline{XY}$$ is a diameter in circle $$B,$$ which of the following equals the area of circle $$A$$ minus the area of circle $$B.$$

(A) $$\ \ 49 \pi$$
(B) $$\ \ 98\pi$$
(C) $$\ \ 147\pi$$
(D) $$\ \ 196\pi$$
(E) $$\ \ 294\pi$$



If $$a=4$$ in the cube above, what is the length of diagonal $$\overline{AB}?$$

(A) $$\ \ 4$$
(B) $$\ \ 4\sqrt{2}$$
(C) $$\ \ 4 \sqrt{3}$$
(D) $$\ \ 8$$
(E) $$\ \ 48$$



Square $$ABCD$$ is circumscribed about circle $$O.$$ If the radius of the circle is $$5,$$ what is the area of the square?

(A) $$\ \ 10$$
(B) $$\ \ 10\pi$$
(C) $$\ \ 25$$
(D) $$\ \ 25\pi$$
(E) $$\ \ 100$$



In the figure above, circles $$A$$ and $$C$$ are tangent to each other at point $$B.$$ If $$a=6$$ and the $$b=10,$$ what is the the length of segment $$\overline{DE}?$$

(A) $$\ \ 4$$
(B) $$\ \ \sqrt{60}$$
(C) $$\ \ \sqrt{240}$$
(D) $$\ \ 16$$
(E) $$\ \ 20$$



In the figure above, $$AB$$ is a diameter in $$\bigodot O$$ and $$\overline{DC} \parallel \overline{AB}.$$ If $$\angle DOC = 60^\circ,$$ and the area of $$\triangle DOC$$ equals $$\frac{121\sqrt{3}}{4},$$ what is the area of $$\triangle ABC?$$

(A) $$\ \ \frac{121\sqrt{3}}{4}$$

(B) $$\ \ \frac{121\sqrt{3}}{2}$$

(C) $$\ \ 121$$

(D) $$\ \ \frac{363\sqrt{3}}{4}$$

(E) $$\ \ \frac{121\pi}{2}$$

×