×
Back to all chapters

# SAT Functions

$f(x)=x^{2}-25$ $g(x)=\sqrt{25-x^{2}}$

The functions $$f$$ and $$g$$ are defined above. Which of the following is the domain of $$f(g(x))$$?

(A) $$\ \ x < -5$$
(B) $$\ \ x \leq 5$$
(C) $$\ \ -5 \leq x \leq 5$$
(D) $$\ \ x > 25$$
(E) $$\ \$$All real numbers

$\begin{array}{l c l} f(x) &=& x^{2}-3\\ g(x) &=& x+7\\ \end{array}$

Which of the following equals $$f(11) - g(6)$$?

(A) $$\ \ -13$$
(B) $$\ \ 5$$
(C) $$\ \ 105$$
(D) $$\ \ 119$$
(E) $$\ \ 131$$

If $$h(x) = -x-3 ,$$ for which of the following values of $$x$$ is $$h(6x)=h(6+x)$$?

(A) $$\ \ -3$$

(B) $$\ \ -\frac{6}{7}$$

(C) $$\ \ -\frac{6}{5}$$

(D) $$\ \ 0$$

(E) $$\ \ \frac{6}{5}$$

If $$f(x)=\frac{3x^{2}-3x+28}{2x}$$ and $$x\neq 0$$, which of the following equals $$f(-7)$$?

(A) $$\ \ -14$$
(B) $$\ \ -7$$
(C) $$\ \ -2$$
(D) $$\ \ \ \ \ 11$$
(E) $$\ \ \ \ \ 14$$

A function $$f$$ is even if for every $$x$$ in the domain of $$f$$, $$f(x)=f(-x)$$. Which of the following functions is NOT even?

(A) $$\ \ f(x)=-x^{2}+2$$
(B) $$\ \ f(x) = 7$$
(C) $$\ \ f(x) = x+7$$
(D) $$\ \ f(x) = |7x|$$
(E) $$\ \ f(x) = 7x^{2}-2$$

×