Waste less time on Facebook — follow Brilliant.
×
Back to all chapters

Congruent and Similar Triangles

If you want to find similar triangles, use only SSS, SAS and AAA. Don't make an ASS of yourself.

Similar Triangles Problem Solving

         

Let \(\lvert\overline {AB}\rvert\) denote the length of \(\overline {AB}.\) Then in the above diagram, \(\lvert\overline {AB}\rvert = \lvert\overline {BC}\rvert\) and \(\lvert\overline {BF}\rvert = \lvert\overline {FE}\rvert.\) If \(\lvert\overline{CD}\rvert=38,\) what is \(\lvert\overline {DE}\rvert?\)

In the above diagram, \(\angle ABD = \angle BCE = \angle CAF.\) Given the lengths \[\lvert \overline{AB}\rvert=12, \lvert \overline{AC}\rvert =7, \lvert \overline{BC}\rvert = 14,\] what is \(\lvert \overline{DE}\rvert : \lvert \overline{EF}\rvert : \lvert \overline{DF}\rvert?\)

Note: The above diagram is not drawn to scale.

In the above quadrilateral \(\square ABCD,\) \[\overline{AD} \parallel \overline{EF} \parallel \overline{BC}, \lvert\overline{AE}\rvert = 2\lvert\overline{EB}\rvert, \lvert\overline{BM}\rvert = 4, \lvert\overline{AD}\rvert = 6, \lvert\overline{BC}\rvert = 9,\] where \(\lvert\overline{AE}\rvert\) denotes the length of \(\overline{AE}.\) What is \(\lvert\overline{DO}\rvert?\)

Note: The above diagram is not drawn to scale.

In the above diagram, \(\triangle ABC\) is a right-angled triangle where \(\angle C\) is a right angle and \(\lvert{\overline{AC}}\rvert=\lvert{\overline{BC}}\rvert.\) If \(\lvert{\overline{AC}}\rvert=\lvert{\overline{AD}}\rvert,\) \(\overline{AB} \perp \overline{DE}\) and \(\lvert{\overline{CE}}\rvert=7,\) what is the measure of \(\overline{DB} ?\)

\(\triangle ABC\) is a right triangle with side lengths \[\lvert\overline{AB}\rvert = 25, \lvert\overline{BC}\rvert = 50\] If \(\square{DBEF}\) in the above diagram is a square, what is the area of \(\square{DBEF}?\)

×

Problem Loading...

Note Loading...

Set Loading...