Waste less time on Facebook — follow Brilliant.
×

Properties of Arithmetic

Understanding the properties of arithmetic will allow you to simplify complex expressions and do difficult calculations in a flash. Just don't divide by 0... See more

Level 2

\[ ({2007} \times {20062006}) - ({2006} \times {20072007}) = \ ? \]

\[ 1 + a + 2b + 3c + 2ab + 3ac + 6bc + 6abc\]

We are given that \(a = \color{red}{999} , b = \color{blue}{666} , c = \color{green}{333}\). Find the value of the expression above.

Hint: Try to factorize the expression.

\[\large\dfrac{x^2+x^4+x^6+x^8+x^{10}}{x^2-x^4+x^6-x^8+x^{10}}=\dfrac{x^3+x^5+x^7+x^9+x^{11}}{x^3-x^5+x^7-x^9+x^{11}}\]

Does the equation above hold true for all real \(x\ne0\)?

\[4(x^2 + 2x + 1)(x^2 + 3x -2) + (x - 3)^2 \\ = (ax^2 + bx + c)^2\] If the above equation is always correct, then what is the value of \( a^2 + b^2 +c^2\)?

\(\displaystyle \left( 1 - \frac{1}{\color{teal}{10}}\right)\left(1 - \frac{1}{\color{teal}{11}}\right)\left(1 - \frac{1}{\color{teal}{12}}\right)\cdots\left(1 - \frac{1}{\color{teal}{100}}\right)= \ ? \)

×

Problem Loading...

Note Loading...

Set Loading...