×
Back to all chapters

# Abstract Data Types

ADTs classify data structures based on usage and behavior, providing an understanding of the interface and responses.

# Stacks - Basic

Consider the usual algorithm for determining whether a sequence of parentheses is balanced. What is the maximum number of parentheses that will appear on the stack AT ANY ONE TIME when the algorithm analyzes: (()(())(()))

What will the following pseudocode output when the word brilliant is inputted?

declare a stack of characters
while ( there are more characters in the word to read )
{
push the character on the stack
}
while ( the stack is not empty )
{
pop a character off the stack
write the character to the screen
}


Consider the stack $$S$$, how many items will it have left after the following operations are performed on it?

 1 S.Push(80) , S.Pop() , S.Push(50) , S.Push(40) , S.Push(17) , S.Pop() , S.Push(84) , S.Push(8) , S.Push(31) , S.Push(58) , S.Push(10) , S.Push(82) , S.Pop() , S.Push(64) , S.Push(27) , S.Push(34) , S.Pop() , S.Pop() , S.Pop() , S.Pop() , S.Pop() , S.Push(54) , S.Push(52) , S.Pop() , S.Pop() , S.Pop() , S.Push(61) , S.Push(38) , S.Pop() , S.Push(53) , S.Push(57) , S.Pop() , S.Pop() , S.Push(32) , S.Push(1) , S.Push(35) , S.Push(58) , S.Pop() , S.Pop() , S.Pop() , S.Push(24) , S.Push(56) , S.Pop() , S.Push(17) , S.Push(77) , S.Pop() , S.Push(17) , S.Push(36) , S.Push(90) , S.Push(15) , S.Pop() , S.Pop() , S.Push(25) , S.Push(76) , S.Pop() , S.Push(68) , S.Push(98) , S.Push(82) , S.Push(81) , S.Push(9) , S.Push(18) , S.Pop() , S.Push(11) , S.Push(86) , S.Pop() , S.Pop() , S.Push(84) , S.Pop() , S.Push(13) , S.Push(30) , S.Push(34) , S.Pop() , S.Push(20) , S.Push(71) , S.Pop() , S.Push(17) , S.Push(91) , S.Pop() , S.Push(27) , S.Pop() , S.Push(38) , S.Pop() , S.Push(1) , S.Push(54) , S.Push(70) , S.Push(30) , S.Pop() , S.Push(27) , S.Pop() , S.Push(18) , S.Pop() , S.Push(70) , S.Push(11) , S.Push(52) , S.Push(2) , S.Push(59) , S.Pop() , S.Push(26) , S.Push(80) , S.Push(89) 
×