Geometry

Sum and Difference Trigonometric Formulas

Sum and Difference Trigonometric Formulas: Level 2 Challenges

         

If sinθ=cosθ\sin\theta= \cos\theta, find the value of cos2θ\cos 2\theta.

If A+B=225A + B = 225^{\circ}, find (1+tanA)(1+tanB),(1+\tan A)(1+\tan B), where defined.

1cos803sin80= ?\large \frac {1}{\cos 80^\circ } - \frac {\sqrt 3}{\sin 80^\circ } = \ ?

Hint: How can we write the numerators in relation to common trig values?

If cos[6arccos(13)]=AB,\cos\left[6\arccos \left(\dfrac{1}{3}\right)\right] = \frac{A}{B}, where AA and BB are relatively prime positive integers, find BA.B-A.

sin218+sin230. \sin^2 18^ \circ + \sin ^2 30 ^ \circ.

Which of the following is equal to the above expression?

×

Problem Loading...

Note Loading...

Set Loading...