Forgot password? New user? Sign up
Existing user? Log in
If sinθ=cosθ\sin\theta= \cos\thetasinθ=cosθ, find the value of cos2θ\cos 2\thetacos2θ.
Are you sure you want to view the solution?
If A+B=225∘A + B = 225^{\circ}A+B=225∘, find (1+tanA)(1+tanB),(1+\tan A)(1+\tan B),(1+tanA)(1+tanB), where defined.
1cos80∘−3sin80∘= ?\large \frac {1}{\cos 80^\circ } - \frac {\sqrt 3}{\sin 80^\circ } = \ ? cos80∘1−sin80∘3= ?
Hint: How can we write the numerators in relation to common trig values?
If cos[6arccos(13)]=AB,\cos\left[6\arccos \left(\dfrac{1}{3}\right)\right] = \frac{A}{B},cos[6arccos(31)]=BA, where AAA and BBB are relatively prime positive integers, find B−A.B-A.B−A.
sin218∘+sin230∘. \sin^2 18^ \circ + \sin ^2 30 ^ \circ. sin218∘+sin230∘.
Which of the following is equal to the above expression?
Problem Loading...
Note Loading...
Set Loading...