Forgot password? New user? Sign up
Existing user? Log in
cot375∘+tan375∘cot75∘+tan75∘= ? \large \dfrac{\cot^375^{\circ}+\tan^375^{\circ}}{\cot75^{\circ}+\tan75^{\circ}} = \ ? cot75∘+tan75∘cot375∘+tan375∘= ?
Are you sure you want to view the solution?
sin2(3A)sin2(A)−cos2(3A)cos2(A)=2\large \dfrac{\sin^2 (3A)}{\sin^2 (A)}-\dfrac{\cos^2 (3A)}{\cos^2 (A)}=2 sin2(A)sin2(3A)−cos2(A)cos2(3A)=2
⟹ cos(2A)= ? \implies \large \cos (2A)= \ ? ⟹cos(2A)= ?
In ΔABC\Delta ABCΔABC, if the length of BCBCBC is twice the length of AC,AC,AC, and ∠A−∠B=90∘,\angle A-\angle B=90^\circ,∠A−∠B=90∘, what is the value of tanC\tan CtanC?
tan(63∘)=a−b+c−b \large \tan(63^\circ) = \sqrt{\sqrt a-\sqrt b} + \sqrt{\sqrt c-\sqrt b} tan(63∘)=a−b+c−b
The equation above is true for positive integers a,b,a,b,a,b, and c.c.c. What is the value of a+b+c?a+b+c?a+b+c?
If we have sin(A+B)cos(A−B)=1+51−5\dfrac { \sin(A+B) }{ \cos(A-B) } =\frac { 1+5 }{ 1-5 }cos(A−B)sin(A+B)=1−51+5 then find the value of tan(π4−A)tan(π4−B).\tan\left(\dfrac { \pi }{ 4 } -A\right)\tan\left(\dfrac { \pi }{ 4 } -B\right).tan(4π−A)tan(4π−B).
Problem Loading...
Note Loading...
Set Loading...