Algebra

Systems of Equations

System of Equations: Level 2 Challenges

         

{x2+y2=30x+y=10\begin{cases} { x }^{ 2 }+{ y }^{ 2 }=30 \\ x+y=10 \end{cases}

If the above equations are true simultaneously, then find the value of xyxy.

{a(b+c)=32b(c+a)=65c(a+b)=77 \large \begin{cases} { a(b+c)=32 } \\ { b(c+a) = 65 } \\ {c(a+b) = 77 } \end{cases}

Given that a,b,a , b, and c c are positive real numbers that satisfy the system of equations above, find the value of abcabc.

Given that a2+b2=c2+d2=1{ a }^{ 2 }+{ b }^{ 2 }={ c }^{ 2 }+{ d }^{ 2 }=1 And also that ac+bd=0 ac+bd=0 What is the value of ab+cdab+cd?

For the positive numbers d,o,v,ed, o, v, e: d2+do=250o2+do=150d^2 + do = 250 \\ o^2 + do = 150 v2+ve=30e2+ve=34v^2 + ve = 30 \\ e^2 + ve = 34 Find the value of d+o+v+ed + o + v + e.

You think you rock at linear equation? Gimme the solution NOT using hit and trial method! Solve for the values of "x" and "y" and enter x+yx+y

Note: These are not linear equations.

×

Problem Loading...

Note Loading...

Set Loading...