Forgot password? New user? Sign up
Existing user? Log in
Calculate the sum of series below. π23!−π45!+π67!−π89!+⋯\frac{\pi^2}{3!}-\frac{\pi^4}{5!}+\frac{\pi^6}{7!}-\frac{\pi^8}{9!}+\cdots3!π2−5!π4+7!π6−9!π8+⋯
Are you sure you want to view the solution?
1+1+22!+1+2+223!+1+2+22+234!+…1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \frac{1+2+2^2+2^3}{4!} + \ldots 1+2!1+2+3!1+2+22+4!1+2+22+23+…
Find the coefficient of x2x^2x2 in the Maclaurin series expansion for (1+ex)10.\large (1+e^{x})^{10}.(1+ex)10.
Evaluate the 25th derivative of x3sin(x2) at x=0.x^3\sin(x^2) \text{ at } x = 0.x3sin(x2) at x=0.
Hint: Start with the Maclaurin series for sin(x)\sin(x)sin(x) to obtain a series for sin(x2)\sin(x^2)sin(x2) and then for x3sin(x2).x^3 \sin(x^2).x3sin(x2).
11⋅2+13⋅4+15⋅6+17⋅8+…\large\dfrac1{1\cdot2}+\dfrac1{3\cdot4}+\dfrac1{5\cdot6}+\dfrac1{7\cdot8}+\ldots1⋅21+3⋅41+5⋅61+7⋅81+…
Let SSS denote the value of series above. Find the value of eSe^SeS.
Problem Loading...
Note Loading...
Set Loading...