Sign up to access problem solutions.

Already have an account? Log in here.

The Taylor series is a polynomial of infinite degree used to represent functions like sine, cube roots, and the exponential function. They're how some calculators (and Physicists) make approximations.

The graph of \(\csc(x)\csc(y)=\phi\) forms a bunch of squares and circles. The area of one of these circles is most nearly which of the following?

*Remark:* \(\phi = \frac{1+\sqrt{5}}{2}\)

Sign up to access problem solutions.

Already have an account? Log in here.

Find the value of \[S= \dfrac{\cos 0}{e^0 \cdot 0!}+ \dfrac{\cos 1}{e^1 \cdot 1!}+\dfrac{\cos 2}{e^2 \cdot 2!}+ \cdots \]

\(\textbf{Details and Assumptions}\)

- In \(\cos n\), \(n\) is considered to be in \(\textbf{radians}\).

Sign up to access problem solutions.

Already have an account? Log in here.

Suppose a particle moves in a right-angled left spiral on an \(xy\)-grid. That is, it moves a distance \(D_{1}(x)\) in a straight line, stops, makes a right-angled turn to it's "left", travels a distance \(D_{2}(x)\) in a straight line, stops, makes a right angled turn to its "left", travels a distance \(D_{3}(x)\) in a straight line and continues in this fashion forever.

If \(D_{n}(x) = \dfrac{x^{n-1}}{(n-1)!}\) for \(n \ge 1,\) and if \(x = 2015,\) then find the magnitude of the straight line distance between the particle's starting and finishing points.

Sign up to access problem solutions.

Already have an account? Log in here.

For all integers \(n\), we define \(\xi_n\) as follows: \[\begin{cases} \xi_n = 1 & \text{if } n \equiv 0 \pmod{4} \text{ or } n \equiv 1 \pmod{4} \\ \xi_n= -1 & \text{if } n \equiv 2 \pmod{4} \text{ or } n \equiv 3 \pmod{4} \end{cases} \] For all \(n \in \mathbb{Z^+}\), let \[f(n)= \xi_0 \dbinom{n}{0} + \xi_1 \dbinom{n}{1} + \xi_2 \dbinom{n}{2} + \cdots + \xi_n \dbinom{n}{n}.\] Find \(\left \lfloor 100 \left( \displaystyle \sum \limits_{n=0}^{\infty} \dfrac{f(n)}{n!} \right) \right \rfloor\).

**Details and assumptions**

As an explicit example, since \(4 \equiv 0 \pmod{4}\), \(\xi_4= 1\), whereas \(\xi_6 = -1\) since \(6 \equiv 2 \pmod{4}\). Note that \(\xi_0= \xi_1= 1\).

The floor function \(\lfloor x \rfloor \) denotes the largest integer less than or equal to \(x\). For example, \(\lfloor 3.25 \rfloor = 3, \lfloor 4 \rfloor= 4, \lfloor \pi \rfloor = 3\).

You might use a scientific calculator for this problem.

Sign up to access problem solutions.

Already have an account? Log in here.

If \(\alpha\) and \(\beta\) are roots of the equation \(x^{2}-px+q=0\) then

\((\alpha+\beta)x-\frac{1}{2}(\alpha^{2}+\beta^{2})x^{2}+\frac{1}{3}(\alpha^{3}+\beta^{3})x^{3}- \ldots \) is equal to?

Sign up to access problem solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...